References for articles about Childhood Leukaemia


Alexander FE et al 1997 – Clustering of childhood leukaemia in Hong Kong: association with the childhood peak and common acute lymphoblastic leukaemia and with population mixing Br J Cancer 75(3):457-63


Altieri A et al 2006 – Number of siblings and the risk of Lymphoma, Leukemia and Myeloma by Histopathology Cancer Epidemiol Biomarkers Prev 15(7):1281-6


Andreasson P et al 2001 – The expression of ETV6/CBFA2 (TEL/AML1) is not sufficient for the transformation of hematopoietic cell lines in vitro or the induction of hematologic disease in vivo Cancer Genet Cytogenet 130(2):93-104


Aytton PM & ML Cleary 2001 – Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins Oncogene 20(40):5695-707


Badham HJ & LM Winn 2010 – In utero exposure to benzene disrupts fetal hematopoietic progenitor cell growth via reactive oxygen species Toxicol Sci 113(1):207-15

Badr FM et al 1999 – Radioprotective effect of melatonin assessed by measuring chromosomal damage in mitotic and meiotic cells Mutat Res 444(2): 367-372


Bassin EB et al 2006 – Age-specific fluoride exposure in drinking water and osteosarcoma (United States) Cancer Causes Control 17(4):421-8

Bateman CM et al 2010 – Acquisition of genome-wide copy number alterations on monozygotic twins with acute lymphoblastic leukaemia Blood 115(17):3553-8


Berrington de González A and S Darby 2004 – Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries Lancet 363(9406):345-51


Birch JM and V Blair 1992 – The epidemiology of infant cancers Br J Cancer Supp 18:52-4


Blask DE et al 2005 – Melatonin-depleted blood from premenopausal women exposed to light at night stimulates growth of human breast cancer xenografts in nude rats Cancer Res 65(23):11174-84

Bogdanovic G et al 2004 – Human herpes virus 6 or Epstein-Barr virus were not detected in Guthrie cards from children who later developed leukaemia Br J Cancer 91:913-5.

Boice JD Jr and RW Miller 1999 – Childhood and adult cancer after intrauterine exposure to ionizing radiationTeratology 59(4):227-33


Bowman JD et al 1995 – Hypothesis: the risk of childhood leukemia is related to combinations of power-frequency and static magnetic fields Bioelectromagnetics 16(1):48-59

Bräuner EV et al 2010 – Is there any interaction between domestic radon exposure and air pollution in relation to childhood leukaemia risk? Cancer Causes Control Jul 6 [Epub ahead of print]

Brosselin P et al 2009 – Acute childhood leukaemia and residence next to gas stations and automotive repair garages: the ESACLE study (SFCE) Occup Environ Med 66(9):598-606


Buffer A 2008 - CHILDREN with LEUKAEMIA Conference 29-30 April, London


Callan AC & E Milne 2009 – Involvement of the IGF system in fetal growth and childhood cancer: an overview of potential mechanisms Causes Control Jun 17 [Epub ahead of print]


Canfield KN et al 2004 – Childhood and maternal infections and risk of acute leukaemia in children with Down syndrome: a report from the Children’s Oncology Group Br J Cancer 91(11):1866-72


Carrillo-Vico A et al 2004 – Evidence of melatonin synthesis by human lymphocytes and its physiological significance: possible role as intracrine, autocrine and /or paracrine substance FASEB J 18(3):537-9


Chan LC et al 2002 - Is the timing of exposure to infection a major determinant of acute lymphoblastic leukaemia in Hong Kong? Paediatr Perinat Epidemiol 16(2):154-65


Chang JS et al 2007 – Parental social contact in the work place and the risk of childhood acute lymphoblastic leukaemia Br J Cancer 97(9):1315-21

Chen CS et al 1993 – Molecular rearrangements on chromosome 11q23 predominate in infant acute lymphoblastic leukemia and are associated with specific biologic variables and poor outcome Blood 81(9):2386-93

Chessells JM 1992 – Leukaemia in the young child Br J Cancer Supp 18:554-7


Coleman MP et al 1989 – Leukemia and residence near electricity transmission equipment: a case-control study Br J Cancer 60:793-798


Daniels JL et al 1997 – Pesticides and childhood cancers Environ Health Perspect 105(10):1068-77


De la Chica RA et al 2005 – Chromosomal instability in amniocytes from fetuses of mothers who smoke JAMA 293(10): 1212-1222


Dinno MA et al 1989 - The significance of membrane changes in the safe and effective use of therapeutic and diagnostic ultrasound Phys Med Biol 34:1543-1552

Dockerty JD et al 2007 – Vitamin and mineral supplements in pregnancy and the risk of childhood acute lymphoblastic leukaemia: a case-control study BMC Public Health 3;7:136

Dockerty JD et al 2001 – Case-control study of parental age, parity and socioeconomic level in relation to childhood cancers Int J Epidemiology 30: 1428-1437

Dockerty JD et al 1999 – Infections, vaccinations and the risk of childhood leukaemia Br J Cancer 80(9): 1483-9


Eger et al 2004 – The influence of being physically near to a cell phone transmitter mast on the incidence of cancer Umwelt.Medizin.Gesellschaft 17:4

Eguchi M et al 2006 – MLL chimeric protein activation renders cells vulnerable to chromosomal damage: an explanation for the very short latency of infant leukemia Genes Chromosomes Cancer 45(8):754-60

Eguchi-Ishimae M et al 2008 – NOTCH1 mutation can be an early, prenatal genetic event in T-ALL Blood 111(1):376-8


Eisenberg W 2009 – Children are very sensitive to radiation Dtsch Arztebl Int 106(23):393


Emerenciano M et al 2006 – Molecular cytogenetic findings of acute leukemia included in the Brazilian Collaborative Study Group of Infant acute leukemia Pediatr Blood Cancer 47(5):549-54


Evrard AS et al 2006 – Childhood leukaemia incidence and exposure to indoor radon, terrestrial and cosmic gamma radiation Health Phys 90(6):569-79E


Fairlie I 2009 – Commentary: childhood cancer near nuclear power stations Environ Health 8:43


Fasching K et al 2001 – Presence of N regions in the clonotypic DJ rearrangements of the immunoglobulin heavy-chain genes indicates an exquisitely short latency in t(4;11)-positive infant acute lymphoblastic leukemia Blood 98(7):2272-4

Fasching K et al 2000 – Presence of clone-specific antigen receptor gene rearrangements at birth indicates an in utero origin of diverse types of early childhood acute lymphoblastic leukemia Blood 95(8):2722-4

Fear NT et al 1999 – Are the children of fathers whose jobs involve contact with many people at an increased risk of leukemia? Occup Environ Med 56(7):438-42


Feizi AA & MA Arabi 2007 – Acute childhood leukemias and exposure to magnetic fields generated by high voltage overhead power lines – a risk factor in Iran Asian Pac J Cancer Prev 8(1):69-72


Fews AP et al 1999a – Corona ions from powerlines and increased exposure to pollutant aerosols Int J Radiat Biol 75:1523-1531
Fews AP et al 1999b – Increased exposure to pollutant aerosols under high voltage power lines Int J Radiat Biol 75(12):1505-1521
Ford AM et al 1998 – Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia Proc Natl Acad Sci U S A 95(8):4584-8
Ford AM et al 1993 – In utero arrangements in the trithorax-related oncogene in infant leukaemias Nature 363(6427):358-60
Forsythe A et al 2010 – Gender Differences in Incidence Rates of Childhood B-Precursor Acute Lymphocytic Leukemia in Mississippi J Pediatr Oncol Nurs 27(3):164-7
Gardner MJ 1991 – Father’s occupational exposure to radiation and the raised level of childhood leukaemia near the Sellafield nuclear plant Environ Health Perspect 94:5-7
Gardner MJ 1990 - Results of case-control study of leukaemia and lymphoma among young people near Sellafield nuclear plant in West Cumbria BMJ 300(6722): 423-9
Greaves M 1999 – Molecular genetics, natural history and the demise of childhood leukaemia Eur J Can 35(2):173-85
Greaves MF 1997 – Aetiology of acute leukaemia Lancet 349(9048): 344-49

Greaves MF et al 1993 – Geographical distribution of acute lymphoblastic leukaemia subtypes: second report of the collaborative group study Leukemia 7(1): 27-34

Greaves MF & Alexander FE 1993 – An infectious aetiology for common acute lymphoblastic leukaemia in childhood Leukemia 7(3): 349-60

Green LM et al 1999 – Childhood leukemia and personal monitoring of residential exposures to electric and magnetic fields in Ontario, Canada Cancer Causes Control 10(3):233-43

Greenland S et al 2000 – A pooled analysis of magnetic fields, wire codes and childhood leukaemia. Epidemiology 11:624-634


Groves F et al 2002 - Haemophilus influenzae type b vaccine formulation and risk of childhood leukaemia Br J Cancer 87:511-2

Groves FD et al 2001 - Haemophilus influenzae type b serology in childhood leukaemia: a case-control study Br J Cancer 85:337-40

Groves FD et al 1999 - Infant vaccinations and risk of childhood acute lymphoblastic leukaemia in the USA Br J Cancer 81: 175-8

Gruhn B et al 2008 – Prenatal origin of childhood acute lymphoblastic leukemia, association with birth weight and hyperdiploidy Leukemia 22(9):1692-7

Guo Y et al 2009 – Biologic features of 688 cases of childhood acute leukaemia – a single centre retrospective study Zhongguo Dang Dai Er Ke Za Zhi 11(10):793-6


Gustafsson B et al 2007 – Adenovirus DNA is detected at increased frequency in Guthrie cards from children who develop acute lymphoblastic leukaemia Br J Cancer 97(7):992-4


Hahn WC et al 1999 – Creation of human tumour cells with defined genetic elements Nature 400(6743):464-8


Han S et al 2010 – Genome-wide association study of childhood acute lymphoblastic leukemia in Korea Leuk Res Feb 25 [Epub ahead of print]


Hattori H et al 2007 – Regulatory polymorphisms of multidrug resistance 1 (MDR1) gene are associated with the development of childhood acute lymphoblastic leukaemia Leuk Res 31(12):1633-40


Heinävaara S et al 2010 – Cancer incidence in the vicinity of Finnish nuclear power plants: an emphasis on childhood leukemia Cancer Causes Control 21(4):587-95


Henshaw DL 2008 – CHILDREN with LEUKAEMIA Conference 29-30 April, London

Henshaw DL and RJ Reiter 2005 - Do magnetic fields cause increased risk of childhood leukaemia via melatonin disruption? Bioelectromagnetics Suppl 7:586-97


Higuchi M et al 2002 – Expression of a conditional AML1-ETO oncogene bypasses embryonic lethality and establishes a murine model of human t(8;21) acute myeloid leukemia Cancer Cell 1(1):63-74


Hocking B & I Gordon 2003 – Decreased survival for childhood leukemia in proximity to television towers Arch Environ Health 58(9):560-4


Hrusak O et al 2002 – Acute lymphoblastic leukaemia incidence during socioeconomic transition: selective increase in children from 1 to 4 years Leukemia 16(4): 720-5


Infante-Rivard C and JE Deadman 2003 – Maternal occupational exposure to extremely low frequency magnetic fields during pregnancy and childhood leukaemia Epidemiology 14(4): 437-41
Infante-Rivard C et al 2000 – Markers of infection, breast-feeding and childhood acute lymphoblastic leukaemia Br J Cancer 83: 1559-64


Infante-Rivard C et al 1999 – Risk of childhood leukaemia associated with exposure to pesticides and gene polymorphisms Epidemiology 10(5): 481-7


Isa A et al 2004 – Human parvovirus B19 DNA is not detected in Guthrie cards from children who have developed acute lymphoblastic leukaemia Pediatr Blood Cancer 42(4):357-60


Jensen CD et al 2004 – Maternal dietary risk factors in childhood acute lymphoblastic leukaemia (United States) Cancer Causes Control 15(6):559-70


Kaatsch P et al 2010 – Maternal use of antibiotics and cancer in the offspring: results of a case-control study in Germany Cancer Causes Control 21(8):1335-45


Kaatsch P et al 2008 – Childhood leukemia in the vicinity of nuclear power plants in Germany Dtsch Arztebl Int 105(42):725-32


Kabuto M et al 2006 – Childhood leukaemia and magnetic fields in Japan: a case-control study of childhood leukaemia and residential power-frequency magnetic fields in Japan Int J Cancer 119(3): 643-50

Kajtár P et al 2003 - Month of birth in childhood acute lymphoblastic leukaemia (Hungarian) Orv Hetil 144:1869-71


Kamper-Jørgensen M et al 2007 - Childcare in the first 2 years of life reduces the risk of childhood acute lymphoblastic leukaemia Leukemia 22(1):189-93

Kaye SA et al 1991 – Maternal reproductive history and birth characteristics in childhood acute lymphoblastic leukaemia Cancer 68: 1351-1355


Kinlen LJ & A Balkwill 2001 – Infective cause of childhood leukaemia and wartime population mixing in Orkney and Shetland, UK Lancet 357(9259):858

Kinlen LJ 1997 – High-contact paternal occupations, infection and childhood leukaemia: five studies of unusual population-mixing of adults Br J Cancer 76(12):1539-45

Kinlen LJ & E Petridou 1995 – Childhood leukaemia and rural population movements: Greece, Italy and other countries Cancer Causes Control 6(5):445-50


Kinlen LJ et al 1993 – Childhood leukaemia and non-Hodgkin’s lymphoma near large rural construction sites, with a comparison with Sellafield nuclear site BMJ 310(6982):763-8

Kinlen LJ et al 1993 – Rural population mixing and childhood leukaemia: effects of the North Sea oil industry in Scotland, including the area near Dounreay nuclear site BMJ 306(6880):743-8


Kleiman RA et al 2000 – Are children living near high-voltage power lines at increased risk of acute lymphoblastic leukemia? Am J Epidemiol 151:512-515

Knox EG 2006 – Roads, railways and childhood cancers J Epidemiol Community Health 60: 136-141

Knox EG 2005a – Childhood cancers and atmospheric carcinogens J Epidemiol Community Health 59: 101-105

Knox EG 2005b – Oil combustion and childhood cancers J Epidemiol Community Health 59: 755-760

Koifman S et al 2008 – High birth weight as an important risk factor for infant leukemia Br J Cancer 98(3):664-7


Körblein A 2009 – Confusion about childhood cancer study Dtsch Arztebl Int 106(23):393-394

Krajinovic M et al 1999 – Susceptibility to childhood acute lymphoblastic leukemia: influence of CYP1A1, CYP2D6, GSTM1, and GSTT1 genetic polymorphisms Blood 93(5): 1496-501


Kwan ML et al 2004a – Food consumption by children and the risk of childhood acute lymphoblastic leukaemia Am J Epidem 160: 1098-1107


Laurier D et al 2008 – Childhood leukaemia incidence below the age of 5 years near French nuclear power plants J Radiol Prot 28(3):401-3

Lausten-Thomsen U et al 2010 – Increased risk of ALL among premature infants is not explained by increased prevalence of pre-leukemic cell clones Blood Cells Mol Dis 44(3):188-90


Li D-K et al 2002 - A population-based prospective cohort study of personal exposure to magnetic fields during pregnancy and the risk of miscarriage Epidemiology 13(1): 9-20

Liang DC et al 2010 – Frequencies of ETV6-RUNX1 fusion and hyperdiploidy in pediatric acute lymphoblastic leukemia are lower in far east than west Pediatr Blood Cancer 55(3):4303


Lightfoot TJ and Roman E 2004 – Causes of childhood leukaemia and lymphoma Toxicol Appl Pharmacol 199(2): 104-17


Lin RS & WC Lee 1994 – Risk of childhood leukaemia in areas passed by high power lines Rev Environ Health 10(2): 97-103


Little J 1999 - Epidemiology of Childhood Cancer IARC Scientific Publication No. 149.

Little MP et al 2009 – Updated estimates of the proportion of childhood leukaemia incidence in Great Britain that may be caused by natural background ionising radiation J Radiol Prot 29(4):467-482


Lorimore SA et al 2008 – Chromosomal instability in unirradiated haemaopoietic cells induced by macrophages exposed in vivo to ionizing radiation Cancer Res 68(19):8122-6


Lupke M et al 2006 – Gene expression analysis of ELF-MF exposed human monocytes indicating the involvement of the alternative activation pathway Biochim Biophys Acta 1763(4):402-12

Lupke M et al 2004 – Cell activating capacity of 50 Hz magnetic fields to release reactive oxygen intermediates in human umbilical cord blood-derived monocytes and in Mono Mac 6 cells Free Radic Res 38(9):985-93


Ma X et al 2002 - Critical windows of exposure to household pesticides and risk of childhood leukemia. Environ Health Perspect 110(9): 955-960

Ma X et al 2002 - Daycare attendance and risk of childhood acute lymphoblastic leukaemia, Br J Cancer 86(9): 1419-24

MacArthur AC et al 2008 – Risk of childhood leukemia associated with parental smoking and alcohol consumption prior to conception and during pregnancy: the cross-Canada childhood leukemia study Cancer Causes Control 19(3):283-95


Mair R 2008 - CHILDREN with LEUKAEMIA Conference 29-30 April, London


McKinney PA et al (on behalf of the UK Childhood Cancer Study Investigators) 2003 – Parental occupation at periconception: findings from the UKCCS Occup Environ Med 60: 901-909

McKinney PA et al 1999 - Pre- and perinatal risk factors for childhood leukaemia and other malignancies: a Scottish case control study Br J Cancer 80, 1844-51


McKinney PA et al 1987 - The inter-regional epidemiological study of childhood cancer (IRESCC): a case control study of aetiological factors in leukaemia and lymphoma Arch Dis Child 62, 279-87

McLaughlin CC et al 2006 – Birth weight, maternal weight and childhood leukaemia Br J Cancer 94(11):1738-44


Megonigal MD et al 1998 – t(11;22)(q23;q11.2) In acute myeloid leukemia of infant twins fuses MLL with hCDCrel, a cell division cycle gene in the genomic region of deletion in DiGeorge and velocardiofacial syndromes Proc Natl Acad Sci U S A 95(11):6413-8


Meinert R et al 1999 - Associations between childhood cancer and ionising radiation: results of a population-based case-control study in Germany Cancer Epidemiol Biomarkers Prev 8(9):793-9


Menegaux F et al 2006 – Household exposure to pesticides and risk of childhood acute leukaemia Occup Environ Med 63(2):131-4


Mezei G et al 2008 – Assessment of selection bias in the Canadian case-control study of residential magnetic field exposure and childhood leukemia Am J Epidemiol 167(12):1504-10

Michaelis J et al 1998 – Combined risk estimates for two German population-based case-control studies on residential magnetic fields and childhood acute leukemia Epidemiology 9:92-94

Michaelis J et al 1997 – Childhood leukemia and electromagnetic fields: results of a population-based case-control study in Germany Cancer Causes Control 8(2):167-74


Milne E 2009 – Fetal growth and risk of childhood acute lymphoblastic leukemia: results from an Australian case-control study Am J Epidemiol 170(2):221-8


Milne L 2008 - CHILDREN with LEUKAEMIA Conference 29-30 April, London

Mkrtchyan H et al 2010 – Molecular cytogenetic studies characterize a near-triploid complex karyotype in a child with acute lymphoblastic leukemia Cancer Genet Cytogenet 197(1):71-74

Mole RH 1990 – Childhood cancer after prenatal exposure to diagnostic X-ray examinations in Britain Br J Cancer 62(1):152-68

Moneypenny CG et al 2006 – MLL rearrangements are induced by low doses of etoposide in human fetal hematopoietic stem cells Carcinogenesis 27(4):874-81


Naumburg E et al 2002 - Perinatal exposure to infection and risk of childhood leukemia Med Pediatr Oncol 38, 391-7
Naumburg E et al 2002 – Results of recent research on perinatal risk factors: resuscitation using oxygen increases the risk of childhood leukaemia Lakartidningen 99(24):2745-7


Neutra et al 2002 - California EMF Program report - An Evaluation of the Possible Risks From Electric and Magnetic Fields (EMFs) From Power Lines, Internal Wiring, Electrical Occupations and Appliances

Nishi M & H Miyake 1989 - A case-control study of non-T cell acute lymphoblastic leukaemia of children in Hokkaido, Japan J Epidemiol Community Health 43:352-5


Nyari TA et al 2003 - Childhood cancer in relation to infections in the community during pregnancy and around the time of birth Int J Cancer 104, 772-7


Oh SH et al 2010 – Two childhood cases of acute leukemia with t(16;21)(p11.2;q22): second case report of infantile acute lymphoblastic leukemia with unusual type of FUS-ERG chimeric transcript Cancer Genet Cytogenet 200(2):180-183

Okatani Y et al 2001 – Melatonin protects against oxidative mitochondrial damage induced in rat placenta by ischemia and reperfusion J Pineal Res 31(2):173-8


Paltiel O et al 2004 – Birth weight and other risk factors for acute leukaemia in the Jerusalem Perinatal Study cohort Cancer Epidemiol Biomarkers Prev 13(6):1057-64

Panzer-Grümayer ER et al 2002 – Nondisjunction of chromosomes leading to hyperdiploid childhood B-cell precursor acute lymphoblastic leukemia is an early event during leukemogenesis Blood 100(1):347-9


Parkin DM et al 1996 – Childhood leukaemia in Europe after Chernobyl: 5 year follow-up Br J Cancer 73(8):1006-12

Pearce MS et al 2007 - Paternal occupational exposure to electro-magnetic fields as a risk factor for cancer in children and young adults: a case-control study from the North of England Pediatr Blood Cancer 49, 280-6

Pearce MS and Parker L 2001 – Childhood cancer registrations in the developing world: still more boys than girls Int J Cancer 93(3): 402-6


Perez-Saldívar ML et al 2008 – Father’s occupational exposure to carcinogenic agents and childhood acute leukemia: a new method to assess exposure (a case-control study) BMC Cancer 8:7

Perrillat F et al 2002 - Day-care, early common infections and childhood acute leukaemia: a multicentre French case-control study, Br J Cancer 86(7):1064-9

Peterka M et al 2007 - Chernobyl: Relationship between the number of missing newborn boys and the level of radiation in the Czech regions Environ Health Perspect 115:1801-6


Petridou E et al 2000 – Endogenous risk factors for childhood leukemia in relation to the IGF system (Greece). The Childhood Haematologists-Oncologists Group Cancer Causes Control 11(8):765-71

Petridou E et al 1997 - Aggregation of childhood leukemia in geographic areas of Greece Cancer Causes Control 8(2):239-45

Petridou E et al 1997 - The risk profile of childhood leukemia in Greece: a nationwide case-control study Br J Cancer 76:1241-1247


Pui CH 1995 – Biology and treatment of infant leukaemias Leukemia 9(5):762-9


Pyatt D & S Hays 2010 – A Review of the Potential Association between Childhood Leukemia and Benzene Chem Biol Interact 184(1-2):151-64


Ramesh N et al 2001 – Low levels of p53 mutations in Indian patients with osteosarcoma and the correlation with fluoride levels in bone J Environ Pathol Toxicol Oncol 20(3): 237-43


Reichel M et al 1998 – Fine structure of translocation breakpoints in leukemic blasts with chromosomal translocation t(4;11): the DNA damage-repair model of translocation Oncogene 17(23):3035-44


Reynolds P et al 2001 – A case-control pilot study of traffic exposures and early childhood leukemia using a geographic information system Bioelectromagnetics Suppl 5:558-68


Rollwitz J et al 2004 – Fifty-hertz magnetic fields induce free radical formation in mouse bone marrow-derived promonocytes and macrophages Biochim Biophys Acta 1674(3):231-8

Roman E et al 2007 - Childhood acute lymphoblastic leukemia and infections in the first year of life: a report from the United Kingdom Childhood Cancer Study Am J Epidemiol 165:496-504

Roman E et al 2006 – Molar pregnancy, childhood cancer and genomic imprinting – is there a link? Hum Fert (Camb) 9(3):171-4


Roman E 1997 - Leukaemia and non-Hodgkin's lymphoma in children and young adults: are prenatal and neonatal factors important determinants of disease? Br J Cancer 76, 406-15

Roman E et al 1994 - Leukaemia risk and social contact in children aged 0-4 years in southern England J Epidemiol Community Health 48:601-2

Roman E et al 1993 – Case-control study of leukaemia and non-Hodgkin’s lymphoma among children aged 0-4 years living in west Berkshire and north Hampshire health districts BMJ 306(6878):615-21


Ross JA et al 1996 – Big babies and infant leukemia: a role for insulin-like growth factor-1? Cancer Causes Control 7:553-559


Sali D et al 1996 – Cancer consequences of the Chernobyl accident in Europe outside the former USSR: a review Int J Cancer 67(3):343-52


Schüz J et al 2001 - Childhood acute leukaemia and residential 16.7 Hz magnetic fields in Germany Br J Cancer 84(5):697-9
Schüz J et al 2000 – Risk of childhood leukemia and parental self-reported occupational exposure to chemicals, dusts, and fumes: results from pooled analyses of German population-based case-control studies Cancer Epidemiol Biomarkers Prev 9(8):835-8


Schüz J et al 1999b – Association of childhood leukemia with factors related to the immune system Br J Cancer 80:585-90

Seaton A et al 1995 – Particulate air pollution and acute health effects Lancet 345: 176-178


Shu XO et al 2002 – Birth characteristics, maternal reproductive history, hormone use during pregnancy, and risk of childhood acute lymphocytic leukemia by immunophenotype (United States) Cancer Causes Control 13(1):15-25

Shu XO et al 2002 - Diagnostic X-rays and ultrasound exposure and risk of childhood acute lymphoblastic leukemia by immunophenotype Cancer Epidemiol Biomarkers Prev 11(2):177-85

Shu XO et al 1999a – Breast-feeding and risk of childhood leukaemia J Natl Cancer Inst 91(20) 1765-72

Shu XO et al 1999b – Parental occupational exposure to hydrocarbons and risk of Acute Lymphocytic Leukaemia in offspring Cancer Epidemiol Biomarkers 8(9): 783-91


Shu XO et al 1994 – Diagnostic X-rays and ultrasound exposure and risk of childhood cancer Br J Cancer 70(3):531-6

Shu XO et al 1988 – A population-based case-control study of childhood leukaemia in Shanghai Cancer 62(3):635-44


Smith M 1997 - Considerations on a possible viral etiology for B-precursor acute lymphoblastic leukemia of childhood J Immunother 20:89-100.


Smith MT et al 2002 – Low NAD(P)H:quinine oxidoreductase activity is associated with increased risk of leukemia with MLL translocations in infants and children Blood 100(13):4590-3

Söderberg KC et al 2002 - Childhood leukemia and magnetic fields in infant incubators Epidemiology 13(1):45-9

Somers CM et al 2004 – Reduction of particulate air pollution lowers the risk of heritable mutations in mice Science 304: 15904-15907


Sørensen PH et al 1994 – Molecular rearrangements of the MLL gene are present in most cases of infant acute myeloid leukemia and are strongly correlated with monocytic or myelomonocytic phenotypes J Clin Invest 93(1):429-37

Spallek J et al 2008 – Cancer patterns among children of Turkish descent in Germany: a study at the German Childhood Cancer Registry BMC Public Health 8:152


Spix C et al 2009 – Case-control study on risk factors for leukaemia and brain tumours in children under 5 years in Germany Klin Padiatr 221(6):362-8


Steiner M et al 1998 – Trends in infant leukaemia in West Germany in relation to in utero exposure due to Chernobyl accident Radiat Environ Biophys 37(2):87-93


Stevens W et al 1990 – Leukemia in Utah and radioactive fallout from the Nevada test site. A case-control study JAMA 264(5):585-91


Strick R et al 2000 – Dietary bioflavonoids induce cleavage in the MLL gene and may contribute to infant leukaemia Proc Natl Acad Sci USA 97(9):4790-5


Tan DX et al 1999 – Identification of highly elevated levels of melatonin bone marrow: its origin and significance Biochim Biophys Acta 1472:206-214


Taylor GM et al 2009 – Strong association of the HLA-DP6 supertype with childhood leukaemia is due to a single allele, DPB1(*)0601 Leukemia 23(5):863-9

Taylor GM et al 2008 – HLA-associated susceptibility to childhood B-cell precursor ALL: definition and role of HLA-DPB1 supertypes Br J Cancer 98(6):1125-31

Taylor GM et al 2002 – Genetic susceptibility to childhood common acute lymphoblastic leukemia is associated with polymorphic peptide-binding pocket profiles in HLA-DPB1*0201 Hum Mol Genet 11(14):1585-97


Thériault G & C Li 1997 - Risks of leukaemia among residents close to high voltage transmission electric lines Occup Environ Med 54(9): 625-8

Thompson JA et al 2010 – Risks of childhood cancer among Texas watersheds, based on mothers’ living locations at the time of birth J Water Health 8(1):139-46


Tumer TB et al 2010 – DNA repair XRCC1 Arg399Gln polymorphism alone, and in combination with CYP2E1 polymorphisms significantly contribute to the risk of development of childhood acute lymphoblastic leukaemia Leuk Res Apr 13 [Epub ahead of print]


UKCCS Investigators 1999 – Exposure to power-frequency magnetic fields and the risk of childhood cancer Lancet 354:1925


Urayama KY et al 2010 – A meta-analysis of the association between day-care attendance and childhood acute lymphoblastic leukaemia Int J Epidemiol 39(3):718-32


Van Maele-Fabry G et al 2010 – Childhood leukaemia and parental occupational exposure to pesticides: a systematic review and meta-analysis Cancer Causes Control 21(6):787-809


Vasconcelos GM et al 2008 – Adenovirus detection in Guthrie cards from paediatric leukaemia cases and controls Br J Cancer 99(10):1668-72


Vianna NJ et al 1984 – Infant leukemia and paternal exposure to motor vehicle exhaust fumes J Occup Med 26(9):679-82

Vijayakrishnan J & R Houlston 2010 – Candidate gene association studies and risk of childhood acute lymphoblastic leukaemia: a systematic review and meta-analysis Haematologica 95(8):1405-14

Vijayalaxmi et al 1999 - Melatonin and protection from whole-body irradiation: survival studies in mice Mutat Res 425(1): 21-27

Vijayalaxmi et al 1996 - Melatonin and radioprotection from genetic damage: In vivo/in vitro studies with human volunteers Mutat Res 371(3-4): 221-228


Vorobtsova IE 2008 – Transgenerational transmission of radiation-induced genomic instability and predisposition to carcinogenesis Vopr Onkol 54(4):490-3


Wakeford R et al 2009 – The proportion of childhood leukaemia incidence in Great Britain that may be caused by natural background ionizing radiation Leukemia 23(4):770-6

Wakeford R 2008 – Childhood leukaemia following medical diagnostic exposure to ionizing radiation in utero or after birth Radiat Prot Dosimetry 132(2):166-74


Wen W et al 2002 – Parental medication use and risk of childhood acute lymphoblastic leukaemia Cancer 95: 1786-1794

Wen W et al 2000 – Allergic disorders and the risk of childhood acute lymphoblastic leukaemia (United States) Cancer Causes Control 11(4):303-7


Weng HH et al 2008 – Association of childhood leukemia with residential exposure to petrochemical air pollution in Taiwan Inhal Toxicol 20(1):31-6


Wiemels JL et al 2008 – Chromosome 12p deletions in TEL-AML1 childhood lymphoblastic leukemia are associated with retrotransposon elements and occur postnatally Cancer Res 63(23):9935-44


Wiemels JL et al 2001 – Methylenetetrahydrofolate reductase (MTHFR) polymorphisms and risk of molecularly defined subtypes of childhood acute leukaemia PNAS 98: 4004-4009


Wiemels JL et al 1999 – A lack of a functional NAD(P)H: quinone oxidoreductase allele is selectively associated with pediatric leukemias that have MLL fusions. United Kingdom Childhood Cancer Study Investigators Cancer Res 59(16):4095-9


Wolf R & D Wolf 2004 – Increased incidence of cancer near a cell-phone transmitter station Int J of Cancer Prevention 1(2)

Wright E 2008 - CHILDREN with LEUKAEMIA Conference 29-30 April, London


Yamamoto S et al 1998 – High frequency of fusion transcripts of exon 11 and exon 4/5 in AF-4 gene is observed in cord blood, as well as leukemic cells from infant leukemia patients with t(4;11)(q21;q23) Leukemia 12(9):1398-403


Yang Y et al 2008 – Case-only study of interactions between DNA repair genes (hMLH1, APEX1, MGMT, XRCC1 and XPD) and low-frequency electromagnetic fields in childhood acute leukemia Leuk Lymphoma 49(12):2344-50


Yauk CL & Quinn JS 1996 – Multilocus DNA fingerprinting reveals high rate of heritable genetic mutation in herring gulls nesting in an industrialized urban site Proc Natl Acad Sci USA 93: 12137-12141


Yuan Y et al 2001 – AML1-ETO expression is directly involved in the development of acute myloid leukemia in the presence of additional mutations Proc Natl Acad Sci U S A 98(18):10398-403


Zahm SH & SS Devesa 1995 – Childhood cancer: overview of incidence trends and environmental carcinogens Environ Health Perspect 103:177-184


Zuna J et al 2003 – Pre-natal, clonal origin of acute lymphoblastic leukaemia in triplets Leuk Lymphoma 44(12):2099-102