

## Interphone Brain Tumors Studies To Date

An Examination of Poor Study Design Resulting in an UNDER-ESTIMATION of the Risk of Brain Tumors

L. Lloyd Morgan RRT Conference, London, 8 & 9 September 2008



## Introduction

As will be seen, the dominant results from all Interphone studies published to date is use of a cellphone *protects* the user from a brain tumor.

There are two possible conclusions from these results:

- 1) Cellphone use does protect the user from brain tumors, or
- 2) The Interphone Study is fundamentally flawed.

An investigation of all reported Odds Ratios (the risk of brain tumors from cellphone use) in 10 single-country Interphone brain tumors studies was made. Only non-redundant Odds Ratios were used to conclude that there is a persistent protective skew, statistically so strong as to report it is virtually certain this protective effect is not due to chance.



## Methodology

#### What If There Is No Risk of Brain Tumors?

(Odds Ratios = ORs)

- Then, # of ORs < 1.0 would be ~equal to # of ORs>1.0
  - Think coin tossing
    - OR=1.0 are excluded
  - OR<1.0 implies protection</li>
  - OR>1.0 implies risk
- 13 Interphone brain tumor studies to date
  - 10 single-country Interphone brain tumor studies analyzed
    - Excluded: 3 multi-country studies overlapping the single-country studies



## **Calculation Methodology**

- Tally the total number of ORs>1.0, ORs<1.0, and ORs=1.0
- Tally the number of statistically independent (non-redundant) ORs
- Calculate the Protection/Risk ratio (OR<1.0/OR>1.0)
- Calculate the cumulative binomial p-values
  - Think: probability of tossing a coin 20 times and getting 18 heads
  - Answer:  $p=2.01x10^{-4}$ , or 1 time in 4,970 it will be due to chance.

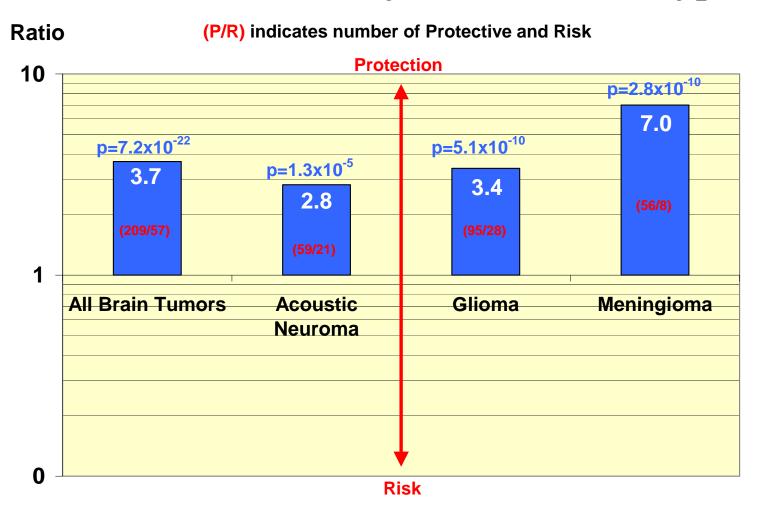


## Methodology

#### **Requires Statistical Independence**

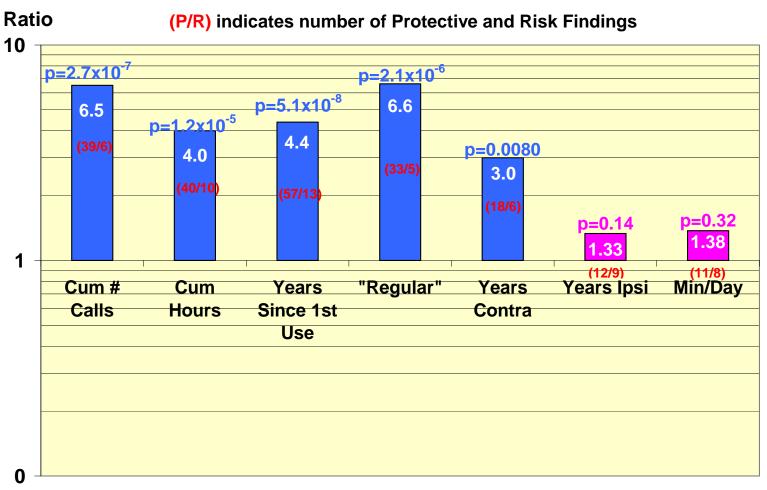
- Comparison categories
  - Brain Tumors
    - All
    - Acoustic Neuroma
    - Glioma
    - Meningioma
  - Years since first use (Years)
  - Cumulative hours of use (Hours)
  - Cumulative number of calls (Call #)
  - "Regular" cellphone use ("Regular")
  - Years of ipsilateral cellphone use (Years Ipsi)
  - Years of contralateral cellphone use (Yrs Contra)
  - Minutes of cellphone use per day (Min/Day)
- Comparisons <u>between</u> studies, <u>not within</u> studies




## Total ORs and Statistically Independent ORs (OR=1.0 Excluded)

|                  | Total | Independent | % Ind. |
|------------------|-------|-------------|--------|
| Acoustic Neuroma | 160   | 96          | 60%    |
| Glioma           | 234   | 125         | 53%    |
| Meningioma       | 124   | 64          | 52%    |
| All Brain Tumors | 518   | 285         | 55%    |

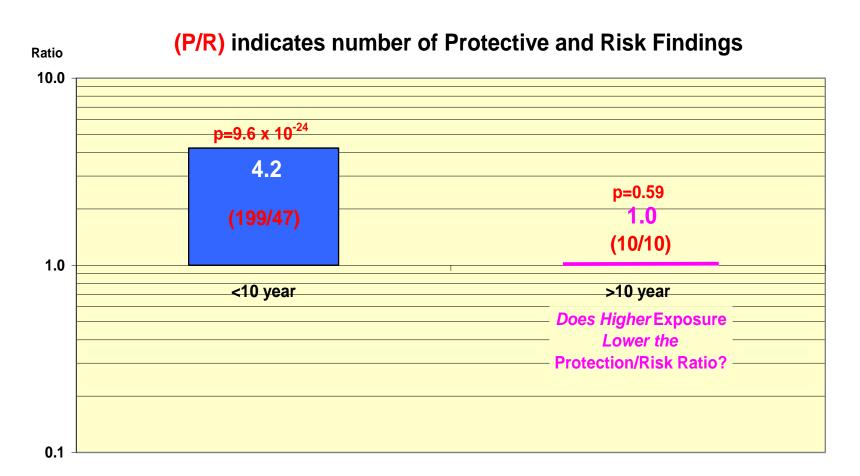
OR=1.0 are 1.5% of all Odds Ratios




### Protection/Risk Ratio by Brain Tumor Type






## Protection/Risk Ratio by Category



#### **Categories**



#### Lower Vs Higher Exposure Time





- Flaw 1: Selection Bias
  - Participating controls use cellphones more than non-participating controls
    - Weighted average control participation rate: 58.9%
      - Controls and cellphone use (Löon 2004)
        - » Of 58.9% of controls who were in study:59% used a cellphone
        - Of 41.1 % of controls who were not in the study:34% used a cellphone
  - Underestimates risk



## Flaw 1: Selection Bias A Semi-Hypothetical Example

|            | With Selection Bias |           |        |
|------------|---------------------|-----------|--------|
|            | <b>Exposed</b>      | Unexposed | Totals |
| Cases      | 60                  | 40        | 100    |
| Controls   | 60                  | 40        | 100    |
| Totals     | 120                 | 80        | 200    |
| Odds Ratio | 1                   | .00       |        |

|            | Without Selection Bias |           |        |
|------------|------------------------|-----------|--------|
|            | <b>Exposed</b>         | Unexposed | Totals |
| Cases      | 60                     | 40        | 100    |
| Controls   | 49                     | 51        | 100    |
| Totals     | 109                    | 91        | 200    |
| Odds Ratio | 1                      | .54       |        |

Exposed Controls=(60% users)\*(59% participants) + (34% non-participants users)\*(40% non-participants)=49%



- Flaw 2: Exposure Misclassification
  - Tumors outside the radiation plume are treated as "exposed"
    - Overestimates risk of brain tumor
  - Ipsilateral: exposed Contralateral: unexposed
  - Percentage of absorbed cellphone radiation by anatomical structure in adults
    - Ipsilateral temporal lobe: 50-60% ~15% of brain's volume
    - "Ipsilateral" cerebellum: 12-25% ~5% of brain's volume
    - 62-85% of absorbed radiation is in ~20% of the brain's volume
    - Children's brains will absorb a higher value.



# Flaw 2 A Semi-Hypothetical Example

|            | With Flaw 2 Design Error |           |        |
|------------|--------------------------|-----------|--------|
|            | "Exposed"                | Unexposed | Totals |
| Cases      | 75                       | 25        | 100    |
| Controls   | 60                       | 40        | 100    |
| Totals     | 135                      | 65        | 200    |
| Odds Ratio | 2.0                      |           |        |

|            | Without Flaw 2 Design Error |           |        |
|------------|-----------------------------|-----------|--------|
|            | <b>Exposed</b>              | Unexposed | Totals |
| Cases      | 15                          | 85        | 100    |
| Controls   | 12                          | 88        | 100    |
| Totals     | 27                          | 173       | 200    |
| Odds Ratio | •                           | 1.3       |        |

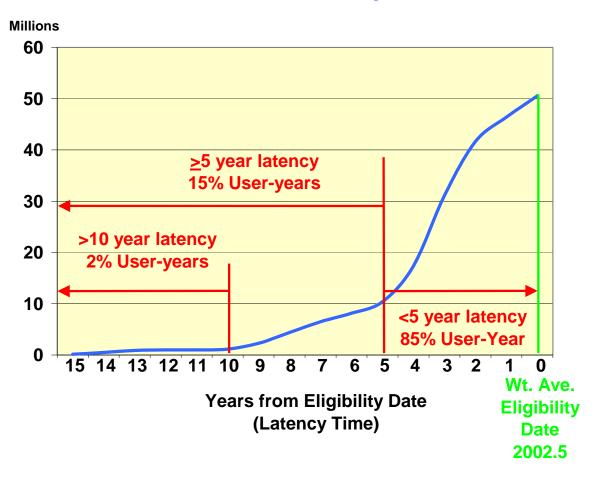
Truly exposed cases=(75 "exposed cases")\*(20% truly exposed)=15. Truly exposed controls=(60 "exposed controls)\*(20% truly exposed)=12



- Flaw 3: Short latency times
  - Known latency times
    - Ionizing radiation & brain tumor: 20-40 years
    - Smoking & lung cancer: ~30 years
    - Asbestos & mesothelioma: 20-40 years
  - Short latency times <u>underestimates risk</u>
- Flaw 4: Definition of "regular" user
  - At least once a week for 6 months or more
    - Use one year prior to diagnosis is excluded
  - Definition of "regular" user <u>underestimates risk</u>



# Flaws 3 & 4: Latency Time & "Regular" Use


- UK cellphone subscriber data
  - 85% of "regular" use
    - <5 years
  - 98% of "regular" use
    - <10 years
- Reporting "regular" use
  - Suppresses finding a risk
- Expect 20 to 40 years for brain tumor Dx
  - Years of cellphone use (latency) is too short for Dx



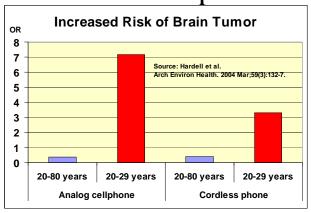
#### Flaws 3 and 4

#### Latency Time and the Definition of "Regular Users"

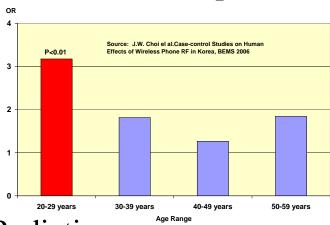
#### **UK Subscribers by Year**



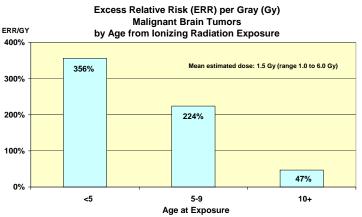



- Flaw 5: Young adults and children are excluded
  - Young adults and children
    - Highest risk group
  - Underestimates risk




#### Flaw 5

## Young Adults and Children Excluded


Swedish: Cellphone.



Korean: Cellphone



Israeli: Ionizing Radiation



Source: Sadetzki et al., RADIATION RESEARCH 163, 424-432 (2005)



- Flaw 6: Cellphones radiating higher power levels are not examined (few exceptions)
  - Analog Vs Digital cellphone use
  - Rural Vs Urban cellphone use
  - Without inclusion of cellphones radiating the most power there is an <u>underestimation of risk</u>
    - Requires sufficient number of cases for statistical power
- Flaw 7: Cordless phone users are treated as unexposed
  - Underestimation of risk



## Flaw 7: Semi-Hypothetical Example

#### **Assumptions:**

36% of Swedish cellphone users do not use a cellphone or cordless phone 57% of Swedish do not use a cellphone

There is a 2-fold risk of brain tumors from cellphone use or cordless phone use

|            | Cordless Phone Exposure Treated As Un-Exposed |           |        |
|------------|-----------------------------------------------|-----------|--------|
| _          | Exposed                                       | Unexposed | Totals |
| Cases      | 43                                            | 57        | 100    |
| Controls   | 27                                            | 73        | 100    |
| Totals     | 70                                            | 130       | 200    |
| Odds Ratio | 2                                             | 2.0       |        |

|            | Cordless Phone Exposure Treated As Exposed |           |        |
|------------|--------------------------------------------|-----------|--------|
|            | Exposed                                    | Unexposed | Totals |
| Cases      | 64                                         | 36        | 100    |
| Controls   | 40                                         | 60        | 100    |
| Totals     | 104                                        | 96        | 200    |
| Odds Ratio | 2                                          | 2.6       |        |



- Flaw 8: Exclusion of brain tumor types
  - Includes acoustic neuroma, glioma & meningioma
  - Excludes other brain tumor types
  - Underestimates risk
- Flaw 9: Exclusion of brain tumor cases because of death
  - Underestimates risk of the most deadly brain tumors



- Flaw 10: Recall bias
  - Light users tend to underestimate use
  - Heavy users tend to overestimate use
  - Result: Underestimation of risk



## Flaw Mitigation

- Increase the diagnosis eligibility time
  - Ten Interphone studies: weighted-average 2.6 years
  - Hardell et al. studies: 6 years
- Lower minimum age from 30 years to 10 years
- Do not tell controls what is the purpose of the study
  - Pay cases and controls for participation in study
- Interview proxies in case of death
- Treat unexposed tumors as unexposed
- And, so on, and so on, and so on ...
  - It could have been done



## **Conflicts-of-Interest**

- 2008 Global Telecom Industry Revenue: \$3.85
   Trillion <a href="http://www.plunkettresearch.com/Telecommunications/TelecommunicationsStatistics/tabid/96/Default.aspx">http://www.plunkettresearch.com/Telecommunications/TelecommunicationsStatistics/tabid/96/Default.aspx</a>
  - If risk is found: major revenue loss
  - Interphone's funding is inadequate to mitigate flaws
    - Substantial funding from cellphone industry
- UK Government
  - £22.5 billion (~\$41B) selling off the 3G licences
  - Annual income of around £15 billion (~\$27B) in taxation to the UK exchequer
- Similar industry funding to all governments



## Conflicts-of-Interest

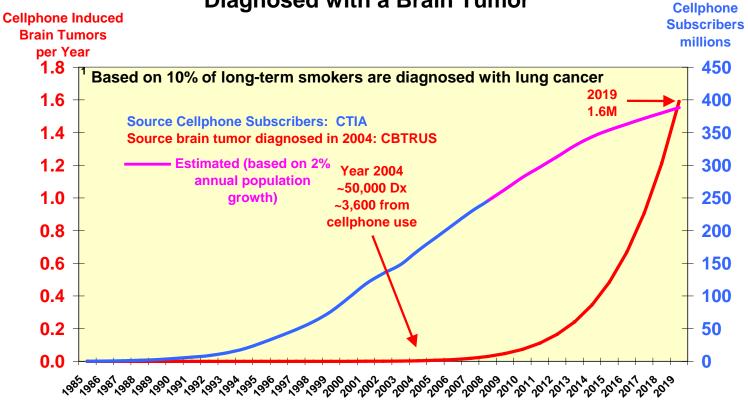
- Researchers' conflict-of-interest (unconscious?)
  - Source of funds: known in spite of "Firewall"
  - Honest, but "Don't bite the hand that feeds you"
    - 33 significant *protective* results
      - Ignored by authors (no commentary in the text)



## Conclusions

- Either cellphone use is protective, or the study has major flaws
- The Interphone Protocol <u>substantially</u>, underestimates the risk of brain tumors
  - In spite of protective skew, significant increased risk is found in the Interphone studies
    - $\geq$ 10 years <u>and</u> ipsilateral use
      - Increased exposure counteracts design flaws' protective skew?
- Without design flaws, risk would increase substantially
- Cellphone industry's conflict-of-interest is obvious
- Potential public health impact is enormous
- Studies independent of industry are required




# Cellphone Studies Independent of Industry Funding

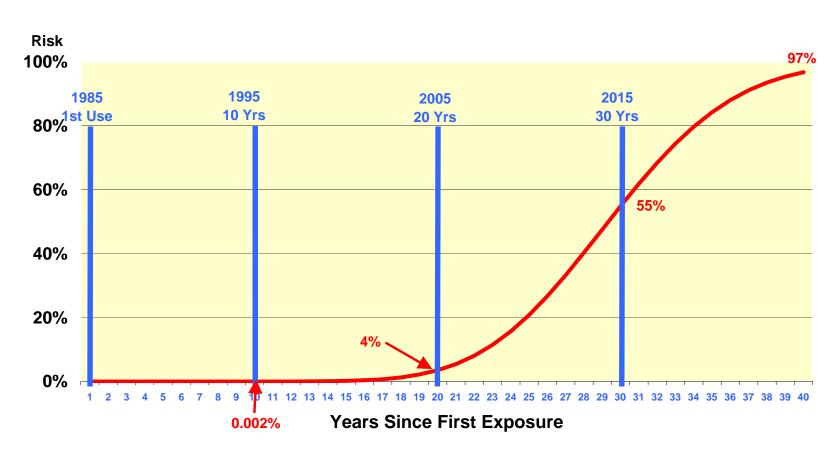
- Swedish team led by Dr. Hardell
  - Findings consistent with expectations
    - The higher the cumulative hours of use, the higher the risk
    - The higher the radiated power, the higher the risk
      - Analog Vs Digital cellphones
      - Rural Vs Urban users
    - The higher the number of years since first use, the higher the risk
    - The higher the cumulative number of calls, the higher the risk
    - The higher the exposure, the higher the risk
      - Tumor on the same side of the head where the cellphone was used
    - The younger the user, the higher the risk



### Potential Public Health Risk

Potential Brain Tumor Cases From Use of a Cellphone Assuming a 30-Year Latency Time and 10% of Users<sup>1</sup>
Diagnosed with a Brain Tumor






## I Pray I'm Wrong!



## Potential Brain Tumor Risk 30-year Latency

#### Poisson Distribution Calculation

